SYNTHESIS AND STRUCTURE OF DITHIODIIRON HEPTACARBONYL

N.S. NAMETKIN, B.I. KOLOBKOV, V.D. TYURIN *, A.N. MURATOV *, A.I. NEKHAEV*, M. MAVLONOV, A.Ya. SIDERIDU,
A. V. Topchev Institute of Petrochemical Synthests, Academy of Sciences of the U.S.S.R., Leminsku Prospekt 29. Moscon (U.S.S.R.)
G.G. ALEKSANDROV, A.V. LEBEDEV,

All-Union Sctentific Research Instutute of Antibiotics, Nagatınskaya st. 3a, Moscow (U.S.S.R.)
M.T. TASHEV and H.B. DUSTOV

Bukhara Technological Instutute of Food and Light Industry, Leninskogo Komsomola Prospekt, Bukhara (U.S.S.R.)
(Received May 29th, 1984)

Summary

In addition to $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{~S}_{2}$, a novel dithiodiiron heptacarbonyl complex, $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$, was isolated in a small yield from the products of the reaction of S_{8} with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ in THF. The structure of this complex was established by X-ray analysis.

Results and discussion

We found that the reaction of S_{8} with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ in THF generates, besides $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}_{2}$ (I) and $\mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{~S}_{2}$ (II) [1], a new dithiodiiron heptacarbonyl complex, $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$ (III), in a low yield ($<1 \%$).

III is present in the reaction mixture in a small amount; this complex is labile and upon heating, easily transforms into I in solution. Its IR spectrum ($\nu(\mathrm{CO}) 1775$ cm^{-1}) allows us to suppose that compound III has a bridged structure, a CO molecule being introduced into the $\mathrm{Fe}-\mathrm{Fe}$ bond, as in the case of the $\mathrm{Fe}_{2}(\mathrm{CO})_{7}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)$ cluster [2].

This supposition is also based on earlier published work on the isolation and identification of dinuclear iron carbonyl complexes with nitrogen-containing bridges of the $\mathrm{Fe}_{2}(\mathrm{CO})_{7} \mathrm{~L}$ type [3]. The formation of an intermediate containing a $\mathrm{Fe}_{2}(\mathrm{CO})_{7}$

[^0]TABLE 1
ATOMIC COORDINATES ($\times 10^{4}$, for $\mathrm{Fe} \times 10^{5}$) AND ANISOTROPIC TEMPERATURE FACTORS IN THE FORM $T=\exp \left[-1 / 4\left(B_{11} h^{2} a^{\star 2}+\ldots+2 B_{23} b^{\star} c^{\star} k l\right)\right]$ OF COMPOUND III

Atom	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Fe	$12263(6)$	$76642(11)$	$1538(5)$	$3.18(3)$	$3.19(3)$	$2.59(2)$	$-0.21(3)$	$0.04(3)$	$-0.14(2)$
$\mathrm{S}(1)$	$2429(1)$	$8905(3)$	2500	$3.23(8)$	$3.45(8)$	$3.77(8)$	$-0.54(7)$	0	0
$\mathrm{~S}(2)$	$1744(1)$	$5073(3)$	2500	$3.68(9)$	$3.07(8)$	$4.44(9)$	$0.04(8)$	0	0
$\mathrm{O}(1)$	$387(4)$	$11528(7)$	$1121(4)$	$8.8(3)$	$4.3(2)$	$7.4(3)$	$1.2(3)$	$-1.9(2)$	$10(2)$
$\mathrm{O}(2)$	$-575(3)$	$5756(7)$	$1030(3)$	$4.3(2)$	$6.4(3)$	$5.8(3)$	$-1.3(2)$	$-0.2(2)$	$-1.6(2)$
$\mathrm{O}(3)$	$2236(4)$	$7230(8)$	$-455(3)$	$83(3)$	$8.4(3)$	$4.9(2)$	$-1.5(3)$	$3.0(2)$	$-1.6(2)$
$\mathrm{O}(4)$	$3638(4)$	$5766(10)$	2500	$3.7(3)$	$6.3(3)$	$11.2(4)$	$0.6(3)$	0	0
$\mathrm{C}(1)$	$713(5)$	$10037(9)$	$1291(4)$	$4.8(3)$	$4.1(3)$	$3.7(2)$	$-0.3(3)$	$-0.7(2)$	$0.1(2)$
$\mathrm{C}(2)$	$124(4)$	$6464(9)$	$1223(4)$	$4.0(3)$	$4.2(3)$	$3.2(3)$	$-0.3(3)$	$0.1(2)$	$-05(2)$
$\mathrm{C}(3)$	$1829(5)$	$7352(9)$	$306(4)$	$5.3(3)$	$4.5(3)$	$3.9(3)$	$-0.7(3)$	$0.5(2)$	$-0.7(2)$
$\mathrm{C}(4)$	$2861(7)$	$6380(14)$	2500	$3.6(4)$	$4.8(5)$	$5.2(5)$	$0.2(4)$	0	0

group was assumed in the scheme of reductional decyclization of sulfur organic compounds [4]. The complex $\mathrm{Fe}_{2}(\mathrm{CO})_{7}$ (1,3-dithiacyclohexane) has been reported but has not been characterized [5]. The formation of III as an intermediate with a $\mathrm{Fe}-\mathrm{CO}-\mathrm{Fe}$ fragment can be surmised in the reaction that yields I :
$\mathrm{S}_{8}+\mathrm{Fe}_{3}(\mathrm{CO})_{12} \rightarrow\left[\mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{7}\right] \rightarrow \mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}+\mathrm{CO}$
However, an X-ray study demonstrates that this complex is generated by the introduction of a CO molecule into the $\mathrm{S}-\mathrm{S}$ bond. Previously, cases have been described of the analogous introduction of CO into the $\mathrm{N}-\mathrm{S}$ bond in $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}(\mathrm{CO}) \mathrm{NR}[6]$ and into the $\mathrm{N}-\mathrm{N}$ bond in $\mathrm{Fe}_{2}(\mathrm{CO})_{6}[\mathrm{RN}(\mathrm{CO}) \mathrm{NR}]$ complexes [7-11].

Compound III is the single example of an iron carbonyl cluster with a dithiocarbonyl ligand. It is a yellow-orange coloured crystalline compound which dissolves easily in organic solvents, it is relatively stable in the solid state, and upon standing in solution transforms into I. The structure of III is shown in Fig. 1; the atomic coordinates and anisotropic temperature factors are listed in Table 1, bond lengths in Table 2, and bond angles in Table 3.

The X-ray study demonstrates that the dinuclear complex 111 has an ordinary $\mathrm{Fe}-\mathrm{Fe}$ bond supported by the S atoms of the bridged dithiocarbonyl ligand $\mathrm{S}_{2} \mathrm{CO}$, i.e. III has the structural formula $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$. III has a molecular symmetry of $C_{2 k}$, and a crystallographic one of C_{s} (the plane m includes atoms of the $\mathrm{S}_{2} \mathrm{CO}$ ligand which pass normally to the $\mathrm{Fe}-\mathrm{Fe}$ bond).

Fig. 1. Structure of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$.

The coordination of the iron atoms in III is identical to that found in $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~S}$, (I) [12], where the S_{2} ligand is bridged between the Fe atoms, i.e. typical of complexes of the $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{X}_{2}$ type [13] (where $\mathrm{X}=\mathrm{S}$. RS and R is an organic ligand). The $\mathrm{Fe}-\mathrm{S}$ bond lengths are $2.267(2)$ and $2.270(2) \AA$. slightly shorter than those found in I $(2.22 \AA)$, but agree well with the corresponding dimensions in $\mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{RS})_{2}$ type molecules $(2.25 \div 2.26 \AA)$ [13], where the atoms of the S-bridge are bonded to the carbon atom. In the complex $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~L}\left(\mathrm{~L}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}(\mathrm{CO}) \mathrm{S}\right)$ [6], the $\mathrm{Fe}(\mathrm{CO})_{3}$ fragments are bonded by the $\mathrm{Fe}-\mathrm{Fe}$ bond (2.431(4) A) with bridged atoms N and S of the bridged ligand L , and the $\mathrm{Fe}-\mathrm{S}$ bond length is $2.279(5) \mathrm{A}$.

The length of the ordinary $\mathrm{Fe}-\mathrm{Fe}$ bond in III. $2.4875(9) \AA$, is shorter than those found in $\mathrm{I}\left(2.55 \AA\right.$) and in other $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{X}_{2}[13]$ derivatives (the $\mathrm{Fe}-\mathrm{Fe}$ bond length varies from 2.537 to $2.720 \AA$). The geometric parameters of the bridged $\mathrm{S}_{2} \mathrm{CO}$ ligand in III are $\mathrm{C}=\mathrm{O} 1.17(1)$ and $\mathrm{S}-\mathrm{C} 1.812(9) \AA$ (average), similar to those found in $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$ and $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CO}\right)$ (diphoc) [14], where the $\mathrm{S}_{2} \mathrm{CO}$ ligand is coordinated with the Pt atom in a chelate manner ($\mathrm{C}=\mathrm{O} 1.195, \mathrm{~S}-\overline{\mathrm{C}} 1.803$ and 1.755 A). The $\mathrm{Pt}-\mathrm{S}$ distances (average $2.34 \AA$) also agree well with those of $\mathrm{Fe}-\mathrm{S}$ in III (the covalent radius of $\mathrm{Fe}(1.34 \AA)$ is shorter, $\sim 0.09 \AA$, than that of $\mathrm{Pt}(1.43 \AA)$ [15]).

Experimental

The IR spectrum was recorded in hexane on a UR-20 spectrophotometer. The mass spectrum was recorded on an LKB 2091 instrument with a direct inlet to the ion source, at $50^{\circ} \mathrm{C}$ and at an ionization energy of 70 eV . The UV spectrum was taken in heptane on a Specord UV-Vis. Crystals of III were crystallized from

TABLE 2
BOND LENGTHS ${ }^{a}$ OF COMPOUND III

Bond	$d(\AA)$	Bond	$d(\AA)$	Bond	$d(\AA)$
$\mathrm{Fe}-\mathrm{Fe}^{\prime}$	$2.4875(9)$	$\mathrm{Fe}-\mathrm{C}(2)$	$1.803(6)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1130(8)$
$\mathrm{Fe}-\mathrm{S}(1)$	$2.267(2)$	$\mathrm{Fe}-\mathrm{C}(3)$	$1.813(6)$	$\mathrm{O}(2)-\mathrm{C}(2)$	$1125(8)$
$\mathrm{Fe}-\mathrm{S}(2)$	$2.270(2)$	$\mathrm{S}(1)-\mathrm{C}(4)$	$1.814(9)$	$O(3)-\mathrm{C}(3)$	$1.141(8)$
$\mathrm{Fe}-\mathrm{C}(1)$	$1.790(6)$	$\mathrm{S}(2)-\mathrm{C}(4)$	$1.810(9)$	$O(4)-\mathrm{C}(4)$	$1.17(1)$

${ }^{a}$ Atom Fe^{\prime} is Fe taken from crystallographic plane m and has coordinates $x, i, l_{2}^{\prime}-z$.

TABLE 3
BOND ANGLES ${ }^{\circ}$ OF COMPOUND III

Angle	$\omega\left(^{\circ}\right)$	Angle	$\omega\left({ }^{\circ}\right)$	Angle	$\omega\left({ }^{\circ}\right)$
$\mathrm{Fe}^{\prime} \mathrm{FeS}(1)$	$56.73(4)$	$\mathrm{S}(2) \mathrm{FeC}(1)$	$156.9(2)$	$\mathrm{Fe}^{\prime} \mathrm{S}(2) \mathrm{Fe}$	$66.44(5)$
$\mathrm{Fe}{ }^{\prime} \mathrm{FeS}(2)$	$56.78(5)$	$\mathrm{S}(2) \mathrm{FeC}(2)$	$93.0(2)$	$\mathrm{FeS}(2) \mathrm{C}(4)$	$84.5(3)$
$\mathrm{Fe}^{\prime} \mathrm{FeC}(1)$	$100.2(2)$	$\mathrm{S}(2) \mathrm{FeC}(3)$	$103.8(2)$	$\mathrm{FeC}(1) \mathrm{O}(1)$	$178.9(6)$
$\mathrm{Fe}^{\prime} \mathrm{FeC}(2)$	$102.9(2)$	$\mathrm{C}(1) \mathrm{FeC}(2)$	$90.8(3)$	$\mathrm{FeC}(2) \mathrm{O}(2)$	$178.4(5)$
$\mathrm{Fe}^{\prime} \mathrm{FeC}(3)$	$151.1(2)$	$\mathrm{C}(1) \mathrm{FeC}(3)$	$98.1(3)$	$\mathrm{S}(1) \mathrm{C}(4) \mathrm{S}(2)$	$996(4)$
$\mathrm{S}(1) \mathrm{FeS}(2)$	$75.15(6)$	$\mathrm{C}(2) \mathrm{FeC}(3)$	$99.1(3)$	$\mathrm{FeC}(3) \mathrm{O}(3)$	$176.7(6)$
$\mathrm{S}(1) \mathrm{FeC}(1)$	$93.9(2)$	$\mathrm{Fe} \mathrm{S}(1) \mathrm{Fe}$	$66.55(5)$	$\mathrm{S}(1) \mathrm{C}(4) \mathrm{O}(4)$	$1304(6)$
$\mathrm{S}(1) \mathrm{FeC}(2)$	$159.6(2)$	$\mathrm{FeS}(1) \mathrm{C}(4)$	$84.5(3)$	$\mathrm{S}(2) \mathrm{C}(4) \mathrm{O}(4)$	$1300(6)$
$\mathrm{S}(1) \mathrm{FeC}(3)$	$99.9(2)$				

[^1]pentane at $-5^{\circ} \mathrm{C}$. X-Ray diffraction studies were performed on a Syntex-P $\overline{1}$ diffractometer ($\lambda\left(\mathrm{Mo}-K_{\alpha}\right)$, graphite monochromator, $\theta / 2 \theta$-scanning, $3 \leqslant 2 \theta \leqslant 54^{\circ}$, 720 reflections with $F^{2} \geqslant 2 \sigma$). The crystals are orthorhombic, a 14.131(7), $b 6.764$ (3), c $12.900(8) \AA, Z=4, V 1233(1) \AA^{3}$, space group Pnam (the molecule has crystallographic symmetry C_{ς}). The structure was solved by the heavy atom method and refined by the least-squares method in full matrix anisotropic approximation to $R=0.029\left(R_{\mathrm{w}}=0.036\right)$.

Synthesis of $11 I$

A mixture of $105 \mathrm{~g}(0.41 \mathrm{~mol})$ of S_{8} and $252 \mathrm{~g}(0.5 \mathrm{~mol})$ of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ in 11 THF was stirred for 4 h at $60^{\circ} \mathrm{C}$. Excess THF was removed in vacuo, and the residue was Soxhlet-extracted with pentane. After removal of pentane, the residue was chromatographed on a silica gel column (eluant hexane). Isolated: first fraction (I), m.p. $45^{\circ} \mathrm{C}$; second fraction (II), m.p. $115^{\circ} \mathrm{C}$ (cf. [16]); third fraction (III). Yield of I + II, 40\%.

III: M.p. $82^{\circ} \mathrm{C}$ (pentane). Mass spectrum (m / e): $372\left(\mathrm{M}^{+}\right), 344\left(\mathrm{M}^{+}-\mathrm{CO}\right), 316$ ($M^{+}-2 \mathrm{CO}$), $288\left(M^{+}-3 \mathrm{CO}\right.$), $260\left(M^{+}-4 \mathrm{CO}\right) .232\left(M^{+}-5 \mathrm{CO}\right), 204\left(M^{+}-\right.$ $6 \mathrm{CO}), 176\left(M^{+}-7 \mathrm{CO} ; \mathrm{Fe}_{2} \mathrm{~S}_{2}{ }^{+}\right), 144\left(\mathrm{Fe}_{2} \mathrm{~S}^{+}\right), 56\left(\mathrm{Fe}^{+}\right)$. IR spectrum (ν, cm^{-1}): 2095, 2060, 2023, 1985, 1972 ($\mathrm{C} \equiv \mathrm{O}$), 1775 ($\mathrm{C}=\mathrm{O}$), 620, 582, 570, 559, 515, 480, 462. UV spectrum (λ, nm): 215,336. Found: C, $22.80 ; \mathrm{Fe}, 30.34 ; \mathrm{S}, 16.84 . \mathrm{C}_{7} \mathrm{Fe}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ calcd.: C, 22.60; Fe, 30.03; S, 17.24\%.

References

1 N.S. Nametkin, V.D. Tyurin, A.I. Nekhaev, M. Mavlonov and M.A. Kukina, Izv. Akad. Nauk SSSR, Ser. Khim., (1975) 2846.
2 F.A. Cotton, B.E. Hanson, J.D., Jamerson and B.R. Stults, J. Am. Chem. Soc., 99(1977) 3293.
3 A.N. Nesmeyanov, M.I. Rybinskaya and L.V. Rybin, Usp. Khim. (U.S.S.R.), 48(1979) 393.
4 A. Shaver, P.J. Fitzpatrick, K. Steliou and I.S. Butler, J. Am. Chem. Soc., 101(1979) 1313.
5 F.A. Cotton, J.R. Kolb and B.R. Stults, Inorg. Chim. Acta, 15(1975) 239.
6 R. Meij, D.J. Stufkens, K. Vrieze, A.M.F. Brouwers, J.D. Schagen, J.J. Zwinselman, A.R. Overbeek and C.H. Stam, J. Organomet. Chem., 170(1979) 337.
7 M. Dekker and G. Knox, J. Chem. Soc., Chem. Commun., (1967) 1243.
8 S. Aime, L. Milione, R. Rosetti and P.L. Stanghellini, Gazz. Chim. Ital., 105(1975) 617.
9 N. Alper, Inorg. Chem., 11(1972) 976.
10 J.A.J. Jarvis, B.E. Job, B.T. Kilbourn, R.H.B. Mais, P.G. Owston and F. Todd, J. Chem. Soc., Chem. Commun., (1967) 1149.
11 S. Piron, P. Piret and M. van Meerssche, Bull. Soc. Chim. Belg., 76 (1967) 505.
12 C.H. Wei and L.F. Dahl, Inorg. Chem., 4(1965) 493.
13 B.P. Biryukov and Yu.T. Struchkov, Kristallokhimiya, Vol. 7, Itogi Nauki, Seriya Khimiya, VINITI, Moscow, 1971, p. 142.
14 I.J.B. Lin, H.W. Chen and J.P. Facker, Inorg. Chem., 17(1978) 394.
15 V.G. Andrianov, B.P. Biryukov and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 1129.
16 W. Hieber and J. Gruber, Z. Anorg. All. Chem., 296(1958) 91.

[^0]: * Deceased (June 1983).

[^1]: "Atom Fe ' is Fe taken from crystallographic plane m and has coordinates $x, v,{ }_{2}^{1}-z$.

